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Abstract

In this paper, we consider the shape parameter for the exponentiated half logistic
distribution (ExHL) when samples are generalized type I hybrid censored samples.
The shape parameter for the ExHL is estimated by the Bayesian method. We consider
conjugate prior and corresponding posterior distribution is obtained. We also obtain
the maximum likelihood estimator (MLE) of the shape parameter under the generalized
type I hybrid censored samples (GenT1HCs). We compare the estimators in the sense
of the root mean square error (RMSE). The simulation procedure is repeated 1,000
times for the sample size n = 20, 30, 40 and various generalized type I hybrid censored
samples. Finally, a real data set has been analysed for illustrative purpose.

Keywords: Bayesian estimation, exponentiated half-logistic distribution, generalized
type I hybrid censoring, Linex loss function, maximum likelihood estimation, squared
error loss function.

1. Introduction

Consider a life testing experiment in which n units are put on test. Assume that the life
times of n units are independent and identically distributed (i.i.d) as exponentiated half
logistic distribution (ExHL) with the cumulative density function (cdf)

1—exp(—z/0o)

A
1.1
1+exp(_x/0)] , x>0,A>0, (1.1)

P = |

and the probability density function (pdf)

flai ) = UZAeXp(—x/U) [1 —exp(—z/0)

A-1
[1+exp(—z/0)] |1 +exp(x/cr)] , £>0,A>0, (1.2)

where A > 0 is shape parameter.
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Inferences for the half logistic distribution (HL) were discussed by several authors. Kang et
al. (2008) derived the approximate MLE (ApMLE) and MLE of the scale parameter in a HL
based on progressively censored samples. Lee et al. (2011) derived the ApMLE of the scale
parameter in a HL based on doubly generalized type II hybrid censored samples. Recently,
Gwag and Lee (2019) derive the ApMLE and MLE of the parameter in a HL based on unified
hybrid censored samples. Cho and Lee (2021) derived the ApMLE and Bayes estimators of
the scale parameter in a HL based on generalized adaptive progressive hybrid censored
samples. Considering Bayesian reliability estimation, some papers are introduced by Kim
(2002), Kim (2003a) and Kim (2003b).

The detail description of the GenT1HCs is described as follows. The integer k € {1,2,...,r}
is pre-fixed. T € (0,00) is a pre-fixed time point. If the k-th failure occurs after time T,
terminate the experiment at Xj.,; if the th failure occurs before T" and the r-th failure
occurs after T', terminate at T'; if the k-th and r-th failures occur before T, terminate at
X;.n (See Chandrasekar et al. (2004)).

Let d denote the number of observed failures up to time 7. In this scheme, we have one
of the following three types of observations;

Case I: Xi.n, Xony ooy Xpoon, if T' < Xy < X,
Case Il : Xy.,, Xon, ooy Xain, if Xpop < T < Xy,
Case TTT : X1, Xooms eoos Xoeps 1 Xpeon < Xyom < T

A schematic representation of the GenT1HCs is presented in Figure 1.1.

Lst failure 2ndfailure kth failure

Case | [ 2 / / /
Xln X2:n

T X
Experiment Experiment
Begins Ends
1st failure 2ndfailure kth failure d,thfailure rth failure
. . / / / / =
X X, X, Xd,:n T X,
Experiment Experiment
Beging Ends
1st failure Z2ndfailure kth failure rthfailure
. . / / /
X, X, X X T
Experiment Experiment
Begins Ends

Figure 1.1 Schematic illustration of GenT1HCs
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This study is two aims. The 1st is to consider the MLE of the shape parameter when the
samples are GenT1HCs. However, MLE cannot be obtained in a closed form. We use the
numerical method. The 2nd is to consider the Bayesian estimation for the shape parameter
under square error loss function (SqrEL) and linex loss function (LinL).

The rest of this paper is organized as follows. In Section 2, we describe the computation
of the MLE of the A based on the GenT1HCs. In Section 3, Bayes estimators of the A under
the SqrEL and LinL are derived. In Section 4, the description of different estimators that are
compared by performing the Monte Carlo simulation is presented, and Section 5 concludes.

2. Maximum likelihood estimation

Assume that the failure times of the units are the ExHL with cdf (1.1) and pdf (1.2). The
likelihood functions for three Cases are as follows.

Y ﬁ [1—exp(—win/0) ] A=l -1 B { 1 —exp(—2g.m/0) })‘1 ok 7

|1+ exp(—zin/0) | 1+ exp(—2k.n/0)

d r -a—1 - A n—d
o 1 —exp(—zin/0o) _ [1—exp(-T/o)
A) o ]-:-[ | 1+ exp(—2.n/0) | ! { 1+ exp(—T/0) } ] ’

e fo) '1 - {1 — exp(—Zpin/0) },\]

n—r

L) o X T |5 + exp(—in/0) L+ exp(=2rn/0)

i=1" . L

Cases I, IT and III can be combined and be represented as

T = exp(—in o) ] 1 —exp(—¢/o\ M
L e[l {I—FGXP(—%:TL/U)] [1_ {Hepoﬁf)} 1 -y

where z = k and § = zy., for Case I, z =d and £ = T for Case II, and z = r and £ = x,.,,
for Case III. From (2.1), the log-likelihood function can be expressed as

1 —exp(—zin/0)
1+ eXp xi:n/o-)

exp( 5/0)} ].

log L(A) xzlog A+ (A —1 Zlo [

ﬁ(n@bgb{1+MM‘y®

On differentiating the log-likelihood function with the respect to A and equating to zero, we
obtain the estimating equation,

log | 1=exp(=¢/0)
dlog L(\ —exp(—Xin/0) & | THexp(=€/0)
==z + Zl _ —(n—2) X
oA 1+ exp(—zi:n/0) 1 — {71_9"?g_577ﬂ
1+4exp(—¢/o

This equation is in implicit form, so it may be subsequently solved with a numerical method.
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3. Bayesian estimation

In Bayesian estimation, we consider two types of loss functions. The first is the SqrEL
which is symmetrical. But in life testing problems, the nature of losses are not always
symmetric. As an alternative to the SqrEL, the second is the LinL. which is asymmetric.

Since based on the GenT1HCs is a random variable, we consider the natural conjugate
family of prior distributions for that were used as

b® a—1
F(a)A exp(—bA), a>0, b>0. (3.1)

By combining (2.1) with (3.1), the joint density function of X and X is given by
— 1- exp zi:n/o')
A, X) ocAFtert b—) lo
(A X) o exp [ { Z <1 T exp( mi:n/(j)) H

- {iiiEEiZZi}T |

Further, the posterior density function of is given by

m(A;a,b) =

m(AIX) :F(z+a);<1(z+a) -
x N e Loxp | — {bZlo (1+2§E ZZ;ZDH ll{m}A] 7
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S () [ [ afo S (1l

—ﬂog(iiiii ééz )H

ST [ zmlgiiﬂw
(EZ%)]

=I(z+a)K(z +a).

Under SqrEL, the Bayes estimator of A is the mean of the posterior density given by

As :/ (A1 X)dA
0

_r(z+a);<1(z+a)/ooowae’<pl {b_zlog(HZE ZZZ@)H

1-— {1 — exp(=¢/0) }A] o dA

1 +exp(—¢/o)
(z+a)Ki(z+a+1)
N Ki(z+a) ’

Under LinL, the Bayes estimator of A is given by

KQ(Z —+ CL)

. 1
A =——logE(e™") = ——log ———
L 0og (6 ) h OgKl(z—l—a)’

h

where h is the scale parameter of LinL,

E(e™") :/OOO e M r(\X)d)

_ 1 * z a—leX C€Xp xiln/o—)
_I‘(z—|—a)K1(z—|—a)/0 AT pl {h+b Zl <1—|—exp hm/o))}}
Cf1-ep(-¢/o\ M
g [1 {1+exp(—£/o)” “
_ Ks(z+a)
- Ki(z+a)

and

P [ S () g (]
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For the situation where no prior information about the shape parameter A is available,
one may use the quasi density as given by

1
T(A¢) = T €2 0. (3.2)

By combining (2.1) with (3.2), the joint density function of A and X is given by

wwea-ren oS ()| [ -5 |

Further, the posterior density function of A is given by

0 ey | B (o) |
-5 (77) [ S (52l (1]

and

/OOO (A, X)d\ = / AT CeXpl { 1+:§E( z::ﬁ;)}]

[ 1—exp(=¢/0) o
Xll {1+exp( ¢/o)

T
: /0 R )]

e () () e

() [T o[- s mel)
s (1 ome)

rtemer Sy (757) [ 3o (5 28

—jlog <1—eXp(—§ﬂf)>} -

1+ exp(—¢/0)
=I'(z—c+ 1)K5(z —c+1).
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Under SqrEL, the Bayes estimator of A is the mean of the posterior density given by

As :/ (A1 X)dA
0

z

_ 1 > z—c+1 _ _ o 1—exp(—xi:n/0)
_I‘(z—c+1)K3(z—c+1)/0 AT exp[ )\{ Zl g<1+exp(—xi;n/0)

i=1

f1—ep(=¢/o\ M
[-{EEet] -
_(z—c+1)K3(z —c+2)

B K3(z—c+1)

Under LinL, the Bayes estimator of A is given by

. 1 _ 1 Ki(z—c+1)
A= - logE(em) = —~log 242~ €T )
p==qlosBlem™) = —glog o7

where

B(e—) = /0 M (AX)dA
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1 < 1—exp
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4. Illustrative example and simulation results

4.1. Illustrative example

el

£/
£/

)
)

|

Mann and Fertig (1973) give failure times to airplane components subjected to a life test.
The samples are generalized type I hybrid censored samples : 13 components were placed on
test. For this samples, Balakrishnan and Wong (1991) and Lee et al. (2011) indicated that
the half logistic distribution provides a satisfactory fit. In this sample, we assume that the
underlying distribution of this data is the ExHL based on the three GenT1HCs (i.e., Case
I k=4, T= 2.0, and r = 10; Case II: k = 4, T= 2.0, and r = 8). For Case I, the Bayes
estimators under gamma prior of Ag = 1.672955, and Ay, = 1.620997 are obtained. Also, the
Bayes estimators under quasi prior of A\g = 1.932297, and \;, = 1.87217 are obtained. And
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the MLE of A = 2.030625 is obtained. For Case II, the Bayes estimators under gamma prior
of Ag = 1.640206, and Ay, = 1.590039 are obtained. Also, the Bayes estimators under quasi
prior of A\g = 1.895549, and A\;, = 1.837401 are obtained. And the MLE of A = 2.106521 is
obtained.

4.2. Simulation results

Table 4.1 The relative RMSEs and biases of estimators with MLE and Bayes estimator under gamma
prior
RMSE (bias)
s A (h=-15) X (h=—.5) L (h=.5)
20 1 18 10 .2339(.1176) .1262(.0235) .1344(.0348) .1288(.0272) .1238( 0199
12 .2057(.1055) .1257(.0234) .1338(.0346) .1282(.0271) .1233(.0198
14 .1710(.0814) .1256(.0233) .1336(.0345) .1281(.0269) .1232(.0197
16 10 .2336(.1193) .1263(.0234) .1344(.0347) .1288(.0271) .1239(.0198
12 .2053(.1073)  .1258(.0233) .1338(.0345) .1283(.0269) .1234(.0197
14 .1705(.0831) .1256(.0231) .1336(.0344) .1282(.0268) .1233(.0196

.0198

1.2 18 10 .1947(.0848)  .1261(.0237) .1342(.0349) .1287(.0273) .1238(.0201

12 .1840(.0809) .1257(.0235) .1338(.0347) .1282(.0271) .1233(.0199

14 .1644(.0695) .1256(.0234) .1336(.0346) .1282(.0270) .1233(.0198

16 10 .1945(.0891) .1262(.0235) .1342(.0347) .1287(.0272) .1238(.0199

12 .1838(.0852) .1257(.0233) .1338(.0345) .1282(.0270) .1234(.0197

14 .1641(.0738) .1257(.0232) .1337(.0344) .1282(.0269) .1233(.0196

30 1 28 20 .1460(.0786)  .0955(.0129) .0993(.0199) .0967(.0152) .0944(.0106
)

22 .1253(.0599) .0954(.0129) .0992 .0966(.0152) .0943(.0106

24 .1090(.0401)  .0953(.0131) .0991(.0200) .0965(.0154) .0942(.0108

26 20 .1459(.0786)  .0955(.0129) .0993(.0199 .0967(.0152) .0944(.0107
22 .1252(.0600) .0954(.0129) .0991(.0198 .0966(.0152) .0942(.0106
.0200 .0965(.0154) .0942(.0108

22 .1220(.0523) .0953(.0129) .0991(.0199 .0965(.0152) .0942(.0107

24 .1089(.0382)  .0953(.0131) .0991(.0200 .0965(.0153) .0942(.0108

26 20 .1336(.0619) .0953(.0130) .0991(.0199 .0965(.0153) .0942(.0107

22 .1219(.0526) .0953(.0130) .0991(.0199) .0965(.0152) .0942(.0107

24 .1087(.0385)  .0953(.0131) .0991(.0200) .0965(.0154) .0942(.0108

40 1 38 30 .1073(.0523)  .0842(.0109) .0867(.0160) .0850(.0125) .0835(.0092
32 .0965(.0374) .0842(.0110) .0867(.0161) .0850(.0127) .0834(.0093

34 .0900(.0258)  .0841(.0110) .0866

36 30 .1073(.0523) .0842(.0109) .0867

32 .0965(.0374) .0842(.0110) .0867

34 .0900(.0258) .0841(.0110) .0866

1.2 38 30 .1061(.0471) .0843(.0110) .0868
32 .0967(.0360) .0842(.0110) .0867(.0161 .0850(.0127) .0834(.0093

34 .0901(.0256) .0841(.0110) .0866(.0161 .0849(.0126) .0833(.0093

36 30 .1061(.0471) .0842(.0110) .0868(.0161) .0849(.0126) .0835(.0093

32 .0967(.0361) .0842(.0110) .0867(.0161) .0850(.0127) .0834(.0093

34 .0901(.0256) .0841(.0110) .0866(.0161) .0849(.0126) .0833(.0093

.0161 .0849(.0126) .0833(.0093

)
.0160)  .0850(.0125)  .0835(.0092
.0161)  .0850(.0127)  .0834(.0093
.0161)  .0849(.0126)  .0833(.0093

)

)

)

.0161

A
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
E
24 .1089(.0402) .0953(.0131)  .0991

(
(
(
(
(
(
(
(
(
(
E
( .0850(.0126)  .0835(.0093
(

(

(

(

(

( ( )

(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
( ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- (.0199) ( )
Gn o |
1.2 28 20 .1338(.0616) .0953(.0130) .0991(.0199) .0965(.0152) .0942(.0107)
(- (.0199) ( )
(- (:0200) ( )
(- (.0199) ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
(- ( ( )
( ( ( )
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Table 4.2 The relative RMSEs and biases of estimators with MLE and Bayes estimator under quasi prior
RMSE (bias)
s A (h=-15) Ap (h=—.5) A (h=.5)
0886) .1603(.0803) .1529(.0722
) .1596(.0800) .1522(.0720
) .1593(.0798) .1520(.0718
0885) .1603(.0801) .1529(.0721
)
)

n T r k
20 1 18 10 .2339(.1176) .1565(.0762) .1683
12 .2057(.1055) .1559(.0760) 1676

14 .1710(.0814) .1556(.0758) 1672

16 10 .2336(.1193) .1565(.0761) .1683

12 .2053(.1073)  .1559(.0759) 1676

14 .1705(.0831)  .1556(.0756) 1672

1.2 18 10 .1947(.0848) .1563(.0762) .1680(.0886) .1601(.0802) .1527(.0722

0881

0883 .1596(.0799) .1522(.0719

0880 .1593(.0797) .1520(.0717

12 .1840(.0809) .1558(.0760) .1675(.0884) .1595(.0800) .1522(.0720

14 .1644(.0695) .1556(.0758) .1672(.0881) .1529(.0798) .1520(.0719

16 10 .1945(.0891) .1563(.0761) .1680(.0884) .1600(.0801) .1526(.0721

12 .1838(.0852) .1558(.0759) .1674(.0882) .1600(.0801) .1521(.0719

14 .1641(.0738) .1556(.0757) .1672(.0880) .1595(.0799) .1520(.0717

30 1 28 20 .1460(.0786) .1115(.0472) .1174(.0547) .1134(.0497) .1097(.0448
22 .1253(.0599) .1113(.0471) .1171(.0546) .1132(.0496) .1095(.0447

24 .1090(.0401)  .1113(.0473) .1171(.0547) .1132(.0498) .1095(.0449

26 20 .1459(.0786) .1115(.0472) .1174(.0547) .1134(.0497) .1097(.0448

A
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
( C C
22 .1252(.0600) .1113(.0472)  .1171(.0546)  .1132(.0496)  .1095(.0447
24 .1089(.0402)  .1113(. (.
12 28 20 .1338(.0616) .1113(.0472)  .1172(.0547
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- (- (-
(- ( (

0473) .1171(.0548) .1132(.0498) .1095(.0449
)

22 .1220(.0523) .1113(.0472) .1171(.0546) .1320(.0496) .1095(.0448

24 .1089(.0382)  .1113(.0473) .1171(.0547) .1132(.0497) .1095(.0449

26 20 .1336(.0619) .1113(.0473) .1172(.0547) .1132(.0497) .1095(.0449

22 .1219(.0526) .1113(.0472) .1171(.0546) .1132(.0497) .1095(.0448

24 .1087(.0385) .1113(.0473) .1171(.0547) .1132(.0497) .1094(.0449

40 1 38 30 .1073(.0523) .0950(.0365) .0988(.0418) .0962(.0382) .0938(.0347
)

32 .0965(.0374) .0950(.0365) .0988(.0419 .0962(.0382) .0937(.0348

(- )
(- )
(- )
(- )
(- )
(- )
(- )
(- )
(- )
(- )
(- )
(- )
(- )
(- )
(- )
(- )
( |
1132(.0497)  .1095(.0448)
(- )
(- )
(- )
(- )
(- )
( |
34 .0900(.0258) .0949(.0365)  .0987(.0419)  .0962(.0383)  .0937(.0348)

(- )

(- )

(- )

(- )

(- )

(- )

(- )

(- )

( )

36 30 .1073(.0523) .0950(.0365)  .0988(.0418)  .0961(.0383)  .0938(.0347

32 .0965(.0374) .0950(.0365)  .0988(.0419)  .0962(.0382)  .0937(.0348

34 .0900(.0258) .0949(.0365)  .0987(.0419)  .0962(.0383)  .0937(.0348

12 38 30 .1061(.0471) .0950(.0366)  .0989(.0963)  .0383(.0383)  .0938(.0348
32 .0967(.0360) .0950(.0365)  .0988(.0419)  .9620(.0383)  .0937(.0348

34 .0901(.0256) .0949(.0365)  .0987(.0419)  .0961(.0383)  .0937(.0348

36 30 .1061(.0471) .0950(.0366)  .0989(.0419)  .0963(.0383)  .0938(.0348

32 .0967(.0361) .0950(.0365)  .0988(.0419)  .0962(.0383)  .0937(.0348

34 .0901(.0256) .0949(.0365)  .0987(.0419)  .0961(.0383)  .0936(.0348

To compare the performance of the MLE and Bayes estimators of A under the SqrEL and
LinL, we simulated the RMSEs and biases of all proposed estimators through Monte Carlo
simulation method. We consider various n, T, r and K.

The GenT1HCs from the ExHL are generated for sample size n = 20, 30, 40 and various
GenT1HCs. Using this data, the RMSEs and biases of the Bayes estimators of A under the
SqrEL and the LinL, are simulated by the Monte Carlo method based on 1,000 times for
sample size n = 20, 30, 40 and various GenT1HCs. The simulation results under the gamma
prior and the quasi prior are given in Tables 4.2 and 4.3, respectively. As the n, r and k
increases, the RMSE and bias of the estimates decreases. As the time T increases, the RMSE
and bias of the estimates decreases. The MLE of A is compared with Bayes estimators under
the SqrEL and the LinL in terms of estimated RMSE and bias. The computation of Bayes
estimators is better than MLEs. The Bayes estimators under the LinLL with h = .5 show an
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overall better performance than their corresponding MLE and Bayes estimators under the
SqrEL.

5. Conclusions

In this paper, we consider the shape parameter for the ExHL when samples are GenT1HCs.
The shape parameter for the ExHL is estimated by the Bayesian method. We consider
conjugate prior and corresponding posterior distribution is obtained. We also obtain the
maximum likelihood estimator (MLE) of the shape parameter under the generalized type I
hybrid censored samples (GenT1HCs). The MLE of A is compared with Bayes estimators
under the SqrEL and the LinL in terms of estimated RMSE and bias. The computation of
Bayes estimators is better than MLEs. The Bayes estimators under the LinL. with h = .5
show an overall better performance than their corresponding MLE and Bayes estimators
under the SqrEL. Although we focused on the parameter estimate of the ExHL based on
GenT1HCs, estimation of the parameter from other distributions based on GenT1HCs is of
potential interest in future research.
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