Journal of the Korean Data & http://dx.doi.org/10.7465/jkdi.2018.29.6.1687
Information Science Society Fr=d o] B A B 3t5kE] 7]
2018, 29(6), 1687-1696

Multivariate GLR control charts for the mean vector
and covariance matrix

Seong Rae Jo! - Gyo-Young Cho?

2Department of Statistics, Kyungpook National University
Received 23 October 2018, revised 14 November 2018, accepted 15 November 2018

Abstract

In statistical process control, we want to detect a change in the process
accurately and quickly. The GLR (generalized likelihood ratio) control chart has
problems with calculating test statistics. In modern times, however, advances in
computing systems have enabled GLR chart test statistics calculation. In this
paper, multivariate GLR charts were developed to find changes in the mean
vector and covariance matrix. Another problem with the multivariate GLR
control chart is that the covariance matrix has various forms. In particular, in
order to calculate test statistics on the GLR chart, we need to assume that
the determinant of covariance matrix increases, and that these assumptions
are often unsatisfactory. To solve this problem, this paper suggested giving the
lower limit of the covariance matrix. We showed that the GLR control chart is
effective in detecting shifts in mean vector and covariance matrix. Especially,
the GLR control chart is effective in detecting a wide range of shifts and the
GLR control chart does not require initial parameters.

Keywords: Change point, covariance matrix, GLR control chart, mean vector,
multivariate normal distribution, SSATS.

1. Introduction

Statistical process control charts are statistical tools used to detect assignable
causes in a process. In the process control, detecting a shift in the mean or variance
is important problem. We wish to detect shifts quickly and exactly.
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The traditional control charts - Shewhart, cumulative sum (CUSUM) and expo-
nentially weighted moving average (EWMA) control charts have a strength and a
weakness. Shewhart control chart is effective in detecting large shifts, but it is not
effective in detecting small shifts, CUSUM chart or EWMA chart are effective in
detecting small shifts, but there are not effective in detecting large shifts.

In traditional mutivariate control charts, the Shewhart-type multivariate control
chart was developed by Hotelling (1947), Healy (1987), Crosier (1988). Pignatiello
and Runger (1990) proposed a multivariate CUSUM control chart. Lowry et al.
(1992) proposed a multivariate EWMA control chart.

In applications, it is difficult to predict a size of shift. In order to detect various
shifts, a combination of two or more control charts is one of options. This option
has a good performance over various shifts. Shewhart control chart is effective in
detecting large shifts and CUSUM chart is effective in detecting small shifts. There-
fore Shewhart control chart is used in a combination with CUSUM control chart.
But this option requires many control chart parameters.

Another option is using generalized likelihood ratio (GLR) control chart. This
option is effective in detecting various shifts and it does not require many control
chart parameters.

In prior study, Reynolds and Lou (2010) developed the GLR control chart of the
univariate normal distribution with a shift in mean. Reynolds et al. (2013) developed
the GLR control chart of the univariate normal distribution with a shift in mean and
variance, Choi and Lee (2014) developed the GLR control chart with a sustained
shift and a linear drift in the process mean. Han et al. (2018) developed a Bernoulli
GLR chart based on Bayes estimator.

Wang and Reynolds (2013) developed the GLR control chart of the multivariate
normal distribution with a shift in mean vector. Zhow and Cho (2018) developed the
GLR control chart of the multivariate normal distribution with a shift in covariance
matrix.

The objective of this paper is assumed to be the detection of a shift in mean vector
and/or variance-covariance matrix.

2. Multivariate GLR control charts

2.1. Notations and assumptions

Let the p vector X = (x1,z9,--- ,x,)" be process variable and Xy, = (21, zok, - - - ,
xpi)' represent the observation at the kth sampling time point.

Assume that X has the multivariate normal distribution with mean vector u and
covariance matrix Y. The covariance matrix 3 is as follows;
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W= 8=
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When a process is in control, the distribution of X is M N (19, X0). The in control
process mean vector and covariance matrix is as follows;

Ho1 o011 0012 - O0lp

Ho2 0021 0022 - 002
Ho = . 720 =

Kop Oopl O0p2 " OOpp

When a process is out of control, the distribution of X is M N (p1,%1). The out
of control process mean vector and covariance matrix is as follows;

Hi1 0111 0112 - Ollp

H12 0121 0122 - O12p
1 = 21 = ) : .

Hip Olpl O1p2 " Olpp

We assume that the in control values ug and g are known, and the out of control
values pqp and 37 are unknown. And n observations in a sample are taken within
a sample. The distribution of sample is changed by a shift in mean vector and/or
variance-covariance matrix, a shift has occurred at change point 7. between time 7
and 7 + 1. We assume the distribution of 7. is uniform distribution U (7,7 + 1).

Assume that a shift in occurs at random point 7. and this means that the mean

vector o changes to the unknown mean vector u;, Let the noncentrality parameter
(51 be

87 = (1 — po)'Sg (1 — o).

In this paper, we assume that a shift is a sustained shift.

2.2. Generalized likelihood ratio control charts

Suppose kth observation is in control, the maximum likelihood estimator (MLE) of
(10, X0) is easily obtained by maximizing likelihood function of multivariate normal
distribution.
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On the other hand, if the th observation is in out of control, the likelihood function
is

T

k
L7, p1, S| X1, X, -+, Xp) = [ [ F(Kilpo, B0) x [ F(Xilpa, $1)
=1 =741
— (27T)fpk/2‘20‘77/2‘21yf(kf'r)/Q

T

X exp[—%(Z(Xi — 110)' S5 1 (Xi — po)))]

i=1
L
x exp[—5( Y (X — ) ST (X —m)) (20)
i=7+1
And MLE of (u1,31) is as follows;
1 k
o= Y X (2.2)
(k=) z':;l
1 k
S1rk = =] > (X — k) (Xi = k) (2.3)
i=7+1

The change point 7. is unobserved, we estimate 7 instead of 7 + 1. Under the
assumption that the shift in mean vector and/or variance-covariance matrix occurred
before time k. The MLE of 7. can be estimated by maximizing the likelihood function
L(T, M1, Zl‘Xl, Xg, T ,Xk)

For testing Hy : the process is in control versus H; : the process is out-of-control,
we used the log-likelihood ratio as the test statistic.

maxo<r<k,u;, X1 L(T7 M1, E1|*XP17 X27 T 7Xk)

Ry =lo
F J L(007M0720‘X17X27"' 7Xk)
k—1 -1 -1 ’il,
= Orél‘flfk [tT(SkaEO ) — t?“(Slmel ) — log’f}d]
k—7 _ _ )
— ( 5 )[tr(SOﬂ',kEO 1) —tr(S1 k2 1) — log| _ 1|] (2.4)

|20

In the univariate normal distribution, X is normally distributed with the mean
w and the variance o. (ug,00) is in control parameter and (u1,01) is out of control
parameter. Suppose the number of observation n is small, and o; decreases or pu;
and o] increase, 61 will produce an inflated value of Ry, (See Reynolds et al. (2013)).
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If |341] is closed to 0, then log% is diverge and Ry has inflated value. Therefore

we use a linear lower bound that depends on (k — 7) and n.

. Sh. if [y, > (1 —(k —7)[Z
217B77_7k — {( 1, ,k 1 ‘ ].7 ,k‘ — ( 7( 7)’ 0’ (2.5)

L—v(k =)0 if[S1rx < (1—v(k—")|Z0l,

where B indicates a bound and + is a turning parameter.

2.3. Performance measurements

When the process is out of control, the ATS (average time to signal) is a useful
measure of effectiveness of the control charts. The control chart with the smaller ATS
is the better. For simplicity, the ATS is calculated under the assumption that a shift
in the process occurred at the starting point of the process. In the application, we
assume that a shift occurs after the process starts. So we use the SSATS (steady-state
ATS) based on the assumption that the process is in control and the state of process
changes to out-of-control at a random time 7. And the SSATS is calculated under
the assumption that the control statistic reached its steady state distribution before
a random time 7. The SSATS applies a realistic situation in SPC (staistical process
control) and the SSATS has better the measurement for measuring the ability of
control charts.

In this paper, we choose the control limits so that the in control ATS is approx-
imately 400, each parameter is n = 1, p = 2. Also the simulation with 10,000 runs
was used.

3. Numerical results

3.1. Introduction

In this paper, X has a bivariate normal process and in control parameter (g, >o)

is as follows;
0 1 08
“°_<0)’Z°_(0.8 1)'

For checking the effect of turning parameter ~ and selecting optimal turning pa-
rameter, we simulate the SSATS with ~ € (0,0.001, 0.005).

The GLR statistic Ry is inefficient for computing performance because it uses the
entire data. So we have a window size m to control the amount of data.
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maX(O,kfm)§T<k,,u,1,El L(T7 M, 21 ’le X27 o 7Xk)
L(OO7 Ho, E0|:L‘1a 0% PR :Ek’)

Ry = log

The window size m is 25, 50, 100, 200, 400 and 12,000. If m = 12,000 then it
means m = oo. In Table 3.1, control limits hgrr are obtained by computing when
in control ATS is approximately 400.

Table 3.1 Control limits

m
@ 25 50 100 200 400 12000
0 7.841 7.9101 7.9609 7.9956 8.0066 8.0066
0.001 7.8908 8.0706 8.1607 8.2786 8.3191 8.324
0.005 8.0403 8.3882 8.7382 8.8027 8.8137 8.8137

We choose parameters to check effectiveness in a small shift and a large shift
and the process occurs with a shift in the mean vector and the variance-covariance
matrix,

1) o111 and p11 do not change but 01, 0199 increase.

3

(1)

(2) p11 does not change but 01,0111, 0122 increase.

(3) o111 does not change but 1, 0122, increase and py; decreases.
(4)

4) 01,0111, 0122 increase and p11 decreases.

3.2. Simulation results

For computing SSATS in different variance-covariance matrix structure and mean
vector, parameters (d1, 0111, 0122, p11) are changed. And we assume that 7 is between
200 and 201.

Table 3.2 gives the numerical results for SSATS when o111 and p1; are not changed
but 41 = 0.1,1,2 and o199 = 1.21, 4. Table 3.3 gives the numerical results for SSATS
when p11 is not changed but §; = 0.1,1,2 and o111, 0120 = 1.21, 4. Table 3.4 gives the
numerical results for SSATS when o117 is not changed but §; = 0.1,1,2 and o199 =
1.21,4 and p11 = 0.4,0.64. Table 3.5 gives the numerical results for SSATS when
51 = 0.1, 1,2 and 0111,0122 = 1.21,4 and P11 = 04,064 All tables show SSATS
increases from the large turning parameter and the large m has small SSATS. But
given the efficiency of the computing process, m = 200 is most efficient.
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Table 3.2 SSATS when noncentrality parameter and one variance are changed

5 m

v ! 7122 755 50 100 200 400 12000
01 _L21 7008 59.13 53.66 51.78 5159 51.59

' 4 464 463 459 456 457 457
0 ) 121 1084 10.72 10.64 1057 10.58 10.58
4 3.76 376 3.74 371 372  3.72

) 121 6.08 6.1 606 6.02 603 6.03

4 312 313 311 3.1 3.1 3.1

01 121 7L73 6027 532 5147 5162 5162

' 4 468 471 468 466 468 4.68

0.001 1 121 1097 10.92 10.85 1082 109 100
: 4 3.8 3.82 3.81 381 383 3.83
) 121 6.16 622 62 62 624 6.24

4 316 3.8 3.18 3.18 3.19 3.19

01 121 6963 57.92 5582 5408 5381 5381

' 4 471 479 491 487 488 488

0.005 1 121 1089 11.06 11.39 11.32 11.33 11.33
: 4 382 391 401 399 399 3.99
) 121 6.2 639 659 657 657 6.57

4 3.19 326 3.34 333 333 3.33

Table 3.3 SSATS when noncentrality parameter and two variances are changed

m
T 0 om0 —— 50 100 200 400 12000
o1 121 5480 4878 4547 4429 44.26 44.26
: 1 376 3.76 375 3.73 373 373
0 . 121 1032 1021 10.13 10.06 10.08 10.08
1 32 32 319 317 317 317
) 121 592 593 580 585 587 587
1 274 274 273 272 272 272
o1 121 56.49 50.61 4692 4652 4684 46.84
: 1 38 384 384 383 38 38
000l 1 121 1043 1042 1037 1033 104 104
: 1 324 326 326 326 320 329
) 121 599 605 603 602 606 6.06
1 277 28 28 28 282 282
o1 121 57.05 52.96 52.68 5L14 50.95 50.95
: 1 387 397 41 408 409 4.09
0005 1 121 1058 1073 11.09 11.01 11.02 11.02
: 1 328 337 348 346 3.46  3.46
) 121 61 627 649 645 646  6.46
1 282 20 299 298 298 208

1693
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Table 3.4 SSATS when noncentrality parameter is changed, one variance increases and
correlation coefficient decreases

m
25 50 100 200 400 12000
0.64 2143 20.18 19.75 19.57 19.61 19.61

Y 01 o122 pn

01 121 0.4 9.24 9.14 9.06 9.01 9.02 9.02
’ 4 0.64 3.8 3.79 3.77 3.75 3.75 3.75
0.4 3.03 3.03 3.02 3 3.01 3.01
191 0.64 8.25 8.23 8.17 8.11 8.12 8.12
0 1 0.4 5.79 5.78 5.75 5.72 5.73 5.73
4 0.64 3.19 3.19 3.17 3.16 3.16 3.16
0.4 2.64 2.64 2.63 2.62 2.62 2.62
121 0.64 5.19 5.21 5.18 5.15 5.15 5.15
9 04 412 4.13 4.11 4.09 4.09 4.09
4 0.64 2.71 2.71 2.7 2.69 2.69 2.69
0.4 2.31 2.31 2.3 2.28 2.29 2.29
191 0.64 21.77 21.31 2202 21.84 21.86 21.86
01 0.4 9.4 9.54 9.89 9.83 9.85 9.85
’ 4 0.64 3.79 3.87 3.97 3.94 3.95 3.95
0.4 3.09 3.14 3.22 3.21 3.22 3.22
191 0.64 8.37 8.58 8.92 8.87 8.88 8.88
0001 1 0.4 5.88 6.04 6.26 6.23 6.24 6.24
4 0.64 3.25 3.31 3.39 3.38 3.38 3.38
0.4 2.69 2.75 2.81 2.8 2.81 2.81
191 0.64 5.32 5.48 5.67 5.64 5.65 5.65
9 04 4.22 4.36 4.5 4.49 4.5 4.5
4 0.64 2.77 2.83 291 2.9 2.9 2.9
0.4 2.35 2.41 2.47 2.46 2.46 2.46
191 0.64 21.79 20.65 20.32 20.34 20.48 20.48
01 0.4 9.34 9.32 9.28 9.26 9.32 9.32
’ 4 0.64 3.84 3.86 3.84 3.84 3.85 3.85
0.4 3.06 3.08 3.07 3.07 3.08 3.08
1921 0.64 8.35 8.38 8.36 8.36 8.41 8.41
0005 1 0.4 5.85 5.9 5.87 5.87 5.91 5.91
4 0.64 3.23 3.24 3.23 3.22 3.24 3.24
0.4 2.67 2.68 2.68 2.68 2.69 2.69
191 0.64 5.26 5.31 5.3 5.3 5.34 5.34
9 04 4.18 4.22 4.21 4.23 4.26 4.26
4 0.64 2.74 2.76 2.76 2.76 2.77 2.77

0.4 2.33 2.34 2.34 2.35 2.36 2.36
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Table 3.5 SSATS when noncentrality parameter is changed, two variances increase and
correlation coefficient decreases

m
T 0 ounoz pu o 50 100 200 400 12000
Lol 064 17.58 1688 16.61 1649 1653 16.53
o1 04 81 805 797 793 795 7.95
. 064 213 213 212 211 211 211
04 207 207 206 205 206 206
Lol 064 762 762 758 753 754 7.54
0 . 04 53 531 528 526 526 526
. 064 1.9 1.0 189 188 189 1.89
04 19 19 189 183 189 1.89
Lol 064 495 496 494 491 492 492
) 04 383 380 387 38 386 386
A 064 182 182 181 1.8 181 181
04 174 174 174 173 173 1.3
Lol 0.64 18.01 18.04 1881 1871 1873 1873
o1 04 827 845 872 867 868 868
) 064 211 215 221 22 221 221
04 211 215 221 22 221 221
Lol 064 7.79 3 83 825 827 827
000l 1 04 542 556 575 573 573 573
. 064 1904 198 203 202 203 203
04 194 198 203 202 203 203
Lol 064 508 523 542 54 541 541
) 04 398 411 424 422 423 423
A 064 177 181 185 185 185 1.8
04 177 181 185 185 18 1.8
Lol 064 17.85 17.36 172 17.18 17.32 17.32
o1 04 82 821 817 815 82 8.2
. 064 209 211 21 21 211 211
04 200 211 21 21 211 211
Lol 064 775 7.8 775 7.6 7.81 781
0005 1 04 537 543 541 54 544 544
A 064 192 193 193 193 194 194
04 192 193 193 193 194 194
Lol 064 502 507 506 507 51 5.1
) 04 3903 398 397 308 1 1
A 064 176 177 177 177 1.78 1.78
04 176 177 177 177 178 1.78
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4. Conclusions

In this paper, The GLR control chart is effective for detecting shifts in and in terms
of SSATS. Especially, as the results of simulations, GLR control chart is effective in
detecting a wide range of shifts and the GLR control chart does not require initial
parameters.

Because a shift of mean vector and variance-covariance matrix can make an in-
flated Ry, we consider various variance-covariance matrix structures with a turning
parameter . As the result of simulations, the larger the turning parameter, the more
inefficient the GLR chart.

GLR control chart use a lot of past data. For avoiding inefficiency from large data,
we use a window size. As the result of simulations, when m is 200, GLR control chart
is effective.
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