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Abstract

In this paper we propose robust support vector regression algorithms to deal with
noisy data sets. We adopt the absolute deviation error function for a loss function
of regression model, and the proposed algorithms preserves the structure of the least
squares support vector regression. The proposed algorithms are very fast and the proce-
dures are much simpler than other support vector machine algorithms. They are robust
to regression outliers, because the loss functions are less increasing than the squares
error function for large errors and it uses a weight function for each observation. By
comparing the proposed algorithms with other methods for the simulated datasets and
benchmark datasets, the proposed methods are more robust than the least squares
support vector regression when outliers exist.

Keywords: Absolute deviation, least squares, outliers, robust methods, support vector
regression, weights.

1. Introduction

Support vector machine (SVM), introduced by Vapnik (1995, 1998) has been very impor-
tant machine learning methodology for classification and regression estimation. It has been
successfully applied into many applications such as text classification, feature extraction and
function estimation, see also Amayri and Bouguila (2010), Cao and Tay (2003), Isa et al.
(2008), Mitra et al. (2007), Shen et al. (2008), Lee et al. (2013). Also, Hwang (2011) proposed
a weighted least squares support vector machine for asymmetric least squares regression and
Seok (2014) applied support vector machine to labeled and unlabeled data.

However, SVM has much computational burden, because it solves the optimization prob-
lem with inequality constraints. There are two approaches to reduce the computational
effort. One is to train the data set by decomposition techniques such as sequential minimal
optimization (SMO) (Keerthi et al., 2001) or chucking methods which solve the quadratic
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programming problem that arises for training SVM. The other is to use the equality con-
straints instead of the inequality ones, which is called the least squares support vector
regression (LS-SVR) suggested by Suykens and Vandelwalle (1999). LS-SVR solves a series
of linear equations and so the computational amount reduces. It can be a particular version
of penalized estimation which maintains the balance between empirical risks and general-
ization. LS-SVR uses the square loss function of training samples and the quadratic penalty
function for the exactness and the generalization of the model, respectively.

Unfortunately, there are two drawbacks in LS-SVR. The fist one is that its solution is
not sparse because of the equality constraints, and the second one is that it is not robust to
outliers because of the square loss function (Wen et al., 2010). To overcome the first drawback
Suykens et al. (2002) proposed a pruning method. To deal with the second problem some
researchers developed weighted LS-SVR to reduce the influence of outliers. The main idea of
this approach is how to set appropriately weight for each observation. Suykens et al. (2002)
gave small weights to large residuals which is computed by a robust standardized statistic.
Wen et al. (2010) proposed the weight scheme that samples far from others based on the
least trimmed sum of absolute deviations have smaller weights.

Some authors studied robust loss functions instead of the weight setting approaches to
resolve an outlier issue. For example, Yang et al. (2014) adopted a truncated least squares
loss function. Wang et al. (2014) used non-convex least squares loss function which can be
solved by utilizing the concave-convex procedure. These loss functions are not convex, the
corresponding optimization problems are hard to be solved and consequently they requires
much computation time.

Motivated by the aforementioned research, in this paper, we propose robust LS-SVR meth-
ods with the least absolute deviation (LAD) loss function and weights to reduce the influence
of both regression outliers. We call this weighted least absolute deviation support vector re-
gression (WLAD-SVR). Since the proposed loss function is not differentiable, the closed
solution like LS-SVR can not be derived. However, we adopt an approximation approach
to obtain the influence of observations and so we can obtain the influence information by
solving linear equations like LS-SVR. Therefore, we can investigate the influence of obser-
vations on the estimator without burden of computation time, unlike SVR methods with
non-convex loss functions. Wang et al. (2014) used a Newton method for constructing a
smooth function of the LAD loss function.

This paper is organized as follows. In Section 2 we review the LS-SVR estimator and we
propose LAD-SVR and WLAD-SVR algorithms. Section 3 gives an algorithm to implement
the proposed methods. Wang et al. (2014) and Chen et al. (2017) proposed an approximation
method of the LAD loss function. We also use an approximation algorithm of the LAD loss
function, which can be written by a linear equation system to minimize the non-differentiable
function. Also, we consider the weight for each case, which reduces the effect of outlying
observations. Section 4 provides the result for the artificial and benchmark datasets. It shows
that the performance of the proposed method is superior to the traditional SVM in the view
of the exactness and robustness. Section 5 gives concluding remarks.

2. Weighted least absolute deviation support vector regression

Consider a regression problem with a training data (xi, yi), i = 1, · · · , n, where xi ∈ Rp is
the input data and yi ∈ R is the corresponding output (Suykens et al., 2002). The LS-SVR
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algorithm finds the solution of the following objective function

minw,b
1

2
wTw +

γ

2

n∑
i=1

ε2i (2.1)

s.t. yi = wTφ(xi) + b+ εi, i = 1, · · · , n, (2.2)

where w ∈ Rh is the model complexity, b is the bias, ε is the error variable, φ(xi) =
(φ1(xi), · · · , φh(xi)) is the function which maps the input space into a feature space, and γ
is the regularization parameter which controls the balance between the fitting error and the
model complexity.

Lagrange multipliers and Karush-Kuhn-Tucker (KKT) conditions yields the solution of
LS-SVR as solving the linear system(

K + 1
γ In 1n

1Tn 0

)(
α
b

)
=

(
y
0

)
, (2.3)

where 1n is the n×1 vector of ones, α is the Lagrange parameter of length n, K = (Kij)n×n
is the kernel matrix whose element is k(xi,xj) = φ(xi)

Tφ(xj). In this paper we use the radial
bases function (RBF) Kij = k(xi,xj) = exp(−||xi − xj ||2/σ2), where σ is the bandwidth.

From the solution α, b of (2.3), we get the nonlinear regression estimate as

f(x) = wTφ(x) + b =

n∑
i=1

αik(xi,x) + b.

Instead of w, b in (2.1), we estimate the function using α, b and kernel matrix in (2.3). It
implies that the regression function can be represented by a linear combination of kernel
functions at the input data. This result is called the representer theorem (Argyriou et al.,
2009). By the kernel reproducing property (Chapelle, 2007) the problem (2.1) becomes

minα,b
1

2
αTKα +

γ

2

n∑
i=1

(yi −Kiα− b)2, (2.4)

where Ki is the ith row vector of kernel matrix K.
The LS-SVR converts the inequality constraints of SVR into equality constraints, and so

the computation is very fast. However, the LS-SVR has the drawback of the sensitivity to
outliers or noises with the square loss function. In order to overcome the non-robustness of
LS-SVR Suykens et al. (2002) proposed the weighted LS-SVR (WLS-SVR) by putting small
weights on outliers to reduce their influence to the model. They considered the objective
function instead of (2.4)

minα,b
1

2
αTKα +

γ

2

n∑
i=1

νi(yi −Kiα− b)2, (2.5)

where νi is the weighting factor given by Rousseeuw and Leroy (1987)

νi =


1 if |ε̂i/ŝ| ≤ η1
η2−|ηi/ŝ|
η2−η1 if η1 ≤ |ε̂i/ŝ| ≤ η2,

10−4 otherwise,
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where η1 = 2.5, η2 = 3, ε̂i = α̂i/γ, ŝ is a robust estimate of the standard deviation of the
LS-SVR error variable εi, for example, ŝ = IQR/(2×0.6745) or MAD(ε̂i). The interquartile
range IQR is the difference between the 75th percentile and the 25th percentile. The MAD
stands for the median absolute deviation, defined as MAD = median(|ε̂i −median(ε̂i)|).

Similar to (2.4), we can obtain the optimal solution for (2.5) using the Lagrangian multi-
pliers. By setting the derivatives of (2.5) with respect to α and b to be zero, similar to (2.3)
we obtain the linear equations(

K + ν/γ 1n
1Tn 0

)(
α
b

)
=

(
y
0

)
, (2.6)

where ν = diag(1/ν1, · · · , 1/νn).
De Brabanter et al. (2009) further developed an iteratively reweighted LS-SVR by improv-

ing the WLS-SVR. To further improve the robustness of WLS-SVR, Chen et al. (2015) and
Liu et al. (2016) used trimmed squares function and penalized trimmed squares function
instead of squares loss function, respectively.

Insipred by the robustness of LAD to outliers, we propose the weighted LAD loss function
instead of the LS loss function (2.5), and thus obtain the objective function

minα,b
1

2
αTKα + γ

n∑
i=1

νi|yi −Kiα− b|. (2.7)

The LAD loss function is convex, but non-differentiable. Then it is not easy to directly get
the solution of (2.7). We call the solution of (2.7) the WLAD-SVR estimator for a nonlinear
regression model. In case ν = 1n, that is when the weights are not considered, we call the
solution of (2.7) LAD-SVR. Without the consideration of weights Wang et al. (2014) used
the Newton algorithm of the Huber loss function which is similar to the LAD function to
solve the objective function (2.7), and some authors tried to use approximations (Chen et
al., 2014).

3. Computing Algorithm

The LS-SVR in (2.4) can be solved by linear equation (2.1), because of the quadratic form
of the second term in (2.4). We need to use the quadratic term instead of the absolute term
in (2.7). Note that

|u| ≈ u2

2|u0|
+
|u0|
2

(3.1)

for nonzero u0 near u (Jung, 2013). Then (2.7) at the (t+ 1) step can be approximated by
the following model up to constant terms

Lt+1(α, b) =
1

2
αTKα +

γ

2

n∑
i=1

νi
(Kiα + b− yi)2

|Kiαt + bt − yi|
. (3.2)

Letting the derivative of Lt+1 with respect to α and b be zero, we obtain the linear equations{
(K + Vt/γ)α + b1n = y

1Tnα = 0
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or (
K + Vt/γ 1n

1Tn 0

)(
α
b

)
=

(
y
0

)
, (3.3)

where Vt = diag(|Kiαt + bt − yi|/νi).
Let

Jt =

(
K + Vt/γ 1n

1Tn 0

)−1
.

Based on matrix inversion formula (Graybill, 1983), Jt can be rewritten by

Jt =
1

ht

(
A−1t −A−1t 1n1

T
nA
−1
t A−1t 1n

1TnA
−1
t −1

)
,

where At = K + Vt/γ and ht = 1TnA
−1
t 1n. Then we get the solution αt+1 and bt+1 at the

(t+ 1)-th step by the linear equation(
αt+1

bt+1

)
= Jt

(
y
0

)
=

(
A−1t −A−1t 1n1

T
nA
−1
t

1TnA
−1
t

)
y/ht. (3.4)

Similar to (2.1) the solution αt+1, bt+1 at the (t+ 1)-th step in (3.4) can be reformulated
as the primal form

minw,b
1

2
wTw + γ

n∑
i=1

νi|εi|. (3.5)

The objective function (3.5) can be approximated up to constant terms by the identity (3.1)
as following

1

2
wTw +

γ

2

n∑
i=1

νiε
2
i /|εi,t|,

where εi,t denotes the error evaluated at the t-th step. Then the Lagrangian objective func-
tion becomes

L∗ =
1

2
wTw +

γ

2

n∑
i=1

νi
ε2i
|εi,t|

−
n∑
i=1

αi(w
Tφ(xi) + b+ εi − yi)

for Lagrangian multipliers αi. The KKT condition (Suykens et al., 2002) can be given by
∂L∗
∂w = 0→ w =

∑n
i=1 αiφ(xi)

∂L∗
∂b = 0→

∑n
i=1 αi = 0

∂L∗
∂εi

= 0→ αi = γ νiεi
|εi,t| , i = 1, · · · , n

∂L∗
∂αi

= 0→ wTφ(xi) + b+ εi = yi, i = 1, · · · , n.

Eliminating w, ε yields

n∑
j=1

αjφ(xj)φ(xi) + b+ αi|εi,t|/γνi = yi
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and it can be rewritten by (
K + V∗t /γ 1n

1Tn 0

)(
α
b

)
=

(
y
0

)
, (3.6)

where V∗t = diag(|εi,t|/νi). Since εi,t can be estimated by Kiαt + bt − yi, (3.6) is the same
as (3.4). That is, we obtain the WLAD-SVR solution such as(

α
b

)
=

(
A∗−1t −A∗−1t 1n1

T
nA
∗−1
t

1TnA
∗−1
t

)
y/h∗t , (3.7)

where A∗t = K + V∗t /γ and h∗t = 1TnA
∗−1
t 1n. The unweighted LAD-SVR estimate can be

obtained by V∗t = diag(|εi,t|) in (3.7). It is well known that the least square loss function
is highly sensitive to unusual cases in linear regression. LAD is a robust alternative to least
squares (Giloni et al., 2006). Furthermore, the weighted LAD estimate is more robust than
unweighted LAD in least absolute shrinkage and selection operator (Jung, 2011).

To summarize the proposed algorithm, it is as following procedure.

Step 1. For training data {(xi, yi)}ni=1, determine the optimal values (γ, σ) using the 5
folds cross-validation method based on a grid search, where γ and σ are selected from
the range of 0.01 to 2 with the interval of 0.1 in this paper.

Step 2. Set t = 1 and νi = 1.

Step 3. Solve the LAD-SVR αt, bt by (3.4)

Step 4. Update νi by (2.5) with ε̂i = αi,t|εi,t−1|/γ and V∗t . Obtain αt+1, bt+1 by (3.6).

Step 5 Compute tol = ||αt+1 −αt||22/||αt||22. If tol > 1e−3, set t = t+ 1 and goto Step
3, otherwise exit.

4. Numerical Experiments

In numerical experiments the proposed algorithms LAD-SVR and WLAD-SVR are com-
pared with LS-SVR and WLS-SVR to show the robustness of the proposed estimates for
simulated and benchmark datasets. All the experiments were run on a personal computer
with 3.6 GHz Intel Core i7-7700 CPU, 16.0 GB RAM, and Windows 10 64 bit operation
system using R 3.4.0. The selection of parameters σ and γ is crucial to SVR methods based
on kernel methods. There are so many approaches, such as grid search (Cristianini and
Shawe-Taylor, 2000), particle swarm optimization (Li et al., 2010; Baoi et al., 2013), firefly
algorithm (Xiong et al., 2014), and memetic algorithm (Hu et al., 2013) for optimization
of the SVM parameters. Among these approaches, grid search is one of the most popular
choice, which uses an exhaustive search on parameter space. In this paper we used a grid
search to choose the optimal bandwidth σ and the regularization parameter γ by 5-folds
cross validation method.

Root mean square error (RMSE), mean absolute error (MAE) and ratio between the sum
squared error (SSE) and the sum squared total (SST) for testing samples are employed to
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evaluate the effectiveness of four estimates LS-SVR, WLS-SVR, LAD-SVR and WLAD-SVR
(Wang et al., 2014). These measures are defined by

RMSE =

√√√√ m∑
i=1

(yi − ŷi)2/m,

MAE =

m∑
i=1

|yi − ŷi|/m,

SSE/SST =

m∑
i=1

(ŷi − yi)2/
m∑
i=1

(yi − ȳ)2,

where m is the size of test samples, yi and ŷi denotes the i-th response data and predicted
data, respectively, ȳ =

∑m
i=1 yi/m.

RMSE and MAE are commonly adopted fitting measures to assess the performance of a
regression model. Usually, the smaller RMSE or MAE is, the better the model is (Chen et
al., 2017). The small SSE/SST value indicates the coincidence between true and predicted
values (Zhao et al., 2012).

4.1. Simulation

In this section we conducted SVR methods for two simulated functions with 6 error models
to evaluate the robustness of the algorithms. For simulation study we generated the artificial
datasets (xi, yi) as followings (Wang and Zhong, 2014)

yi = sin(3xi)/(3xi) + εi, xi ∈ [−4, 4],

yi = (x2i − 1)2x3i exp(−xi) + εi, xi ∈ [−1, 1],

where εi is the sample noise. We consider various noise distributions as followings

Case 1. Normal distribution εi ∼ N(0, 0.22).

Case 2. Uniform distribution εi ∼ U(−0.3, 0.3).

Case 3. t distribution εi with degrees of freedom 3 ∼ t(3).

Case 4. Contaminated normal distribution εi ∼ ρN(0, 22) + (1− ρ)N(0, 0.22), where ρ
is the contaminated proportion. We set ρ as 0.1, 0.2 and 0.4.

Under the situation of Cases 1 and 2 it assumes that there is no outliers, while Cases 3
and 4 may contain outliers. We generated 200 training samples and 500 testing samples for
simulation study. The initial search range may decide parameters σ, γ ∈ [0.01, 2], refer to
Suykens et al. (2002).

We conducted 100 simulation replications to evaluate RMSE, MAE, SSE/SST on the
testing data. The simulation results are summarized in Tables 1-2. Results indicate that LS-
SVR and WLS-SVR has a comparative performance to LAD-SVR and WLAD-SVR under
Cases 1 and 2, because the data has no outliers. However, the former has large RMSE,
MAE under Cases 3 and 4, that is, under the non-Gaussian noise or outliers. Especially
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when the data is contaminated up to 40% outliers, the proposed estimate WLAD-SVR has
lowest measures for two simulated functions. It implies that the proposed estimate LAD-
SVR or WLAD-SVR is robust to outliers, the latter generally outperforms the former on
the simulated datasets. Also WLAD-SVR has low SSE/SST values for most cases, and it
indicates that the proposed algorithm is superior to LS-SVR and WLS-SVR, especially
WLAD-SVR is robust to outliers or noise data.

For the function sin(3x)/(3x) the fitted lines for LS-SVR and WLAD-SVR are plotted in
Figure 1, because the results of WLS-SVR and LAD-SVR are similar to LS-SVR and WLAD-
SVR, respectively. The results show that under normal and uniform errors the approximation
performances of LS-SVR is similar to that of WLAD-SVR. However, WLAD-SVR is more
approximate to the true than LS-SVR for the data with outliers (Figure 1 c-f). Overall, the
proposed method performs better than the others under the contaminated errors. For the
20% and 40% contaminated normal errors, the fitted line by LS-SVR has large deviation
from the true lines. Figure 1 show that the generalization performance is further improved
by applying LAD-SVR or WLAD-SVR.

4.2. Real dataset

In this section we conduct the experiments on eight benchmark regression datasets to
test the robustness of the proposed algorithms, where the datasets AutoMPG, Concrete
Compressive Strength, Machine CPU (MCPU), Pyrimidines (Pyrim), Servo, Yacht are
downloaded from the UCI datasets (http://archive.ics.uci.edu/ml/datasets.html),
Bodyfat, Pollution are downloaded from the StatLib database (http://lib.stat.cmu.edu/
datasets/), and Diabetes is downloaded from the webpage (http://www.dcc.fc.up.pt/

~ltorgo/Regression/DataStes.html). These datasets are widely used to evaluate regres-
sion algorithms. Each attribute of the sample including the response is normalized into
the interval [0, 1]. Each datasets was randomly divided into 70% training and 30% testing
samples.

Similar to the previous simulation study, we adopt LS-SVR, WLS-SVR, LAD-SVR, WLAD-
SVR to the benchmark datasets and obtain the results in Table 3. It can be seen that the
three performance measures (RMSE, MAE, and SSE/SST) of LAD-SVR or WLAD-SVR are
the best ones in most datasets, which shows that the proposed algorithms are better than
LS-SVR and WLS-SVR in the points of generalization and stability. These results reveal
that the proposed methods have a higher accuracy than that of LS-SVR and WLS-SVR. The
real data experimental results demonstrate that the approximation methods by LAD-SVR
and WLAD-SVR really works.
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Table 4.1 Simulation results of sin(3x)/(3x) for various noise distributions

Noise Method RMSE MAE SSE/SST
N(0, 0.22) LS-SVR 0.153 0.126 0.193

WLS-SVR 0.155 0.128 0.198
LAD-SVR 0.079 0.065 0.056
WLAD-SVR 0.083 0.068 0.061

U(−0.3, 0.3) LS-SVR 0.152 0.125 0.191
WLS-SVR 0.152 0.125 0.192
LAD-SVR 0.085 0.069 0.063
WLAD-SVR 0.087 0.071 0.067

t(3) LS-SVR 0.596 0.438 3.301
WLS-SVR 0.464 0.360 1.885
LAD-SVR 0.377 0.301 1.265
WLAD-SVR 0.384 0.306 1.334

0.9N(0, 0.22) + 0.1N(0, 22) LS-SVR 0.185 0.138 0.308
WLS-SVR 0.097 0.077 0.090
LAD-SVR 0.100 0.080 0.092
WLAD-SVR 0.099 0.079 0.091

0.8N(0, 0.22) + 0.2N(0, 22) LS-SVR 0.282 0.209 0.704
WLS-SVR 0.130 0.098 0.157
LAD-SVR 0.121 0.095 0.144
WLAD-SVR 0.111 0.088 0.122

0.6N(0, 0.22) + 0.4N(0, 22) LS-SVR 0.435 0.329 1.654
WLS-SVR 0.287 0.214 0.730
LAD-SVR 0.158 0.120 0.260
WLAD-SVR 0.132 0.102 0.168

Table 4.2 Simulation results of (x2 − 1)2x3e−x for various noise distributions

Noise Method RMSE MAE SSE/SST
N(0, 0.22) LS-SVR 0.042 0.033 0.395

WLS-SVR 0.042 0.033 0.405
LAD-SVR 0.062 0.050 0.943
WLAD-SVR 0.065 0.052 1.049

U(−0.3, 0.3) LS-SVR 0.038 0.030 0.339
WLS-SVR 0.038 0.030 0.339
LAD-SVR 0.078 0.064 1.455
WLAD-SVR 0.081 0.066 1.573

t(3) LS-SVR 0.446 0.342 50.036
WLS-SVR 0.342 0.272 28.453
LAD-SVR 0.283 0.230 20.620
WLAD-SVR 0.289 0.235 22.146

0.9N(0, 0.22) + 0.1N(0, 22) LS-SVR 0.171 0.126 6.960
WLS-SVR 0.063 0.050 0.935
LAD-SVR 0.066 0.052 1.111
WLAD-SVR 0.065 0.051 1.063

0.8N(0, 0.22) + 0.2N(0, 22) LS-SVR 0.238 0.185 13.225
WLS-SVR 0.081 0.063 1.617
LAD-SVR 0.081 0.064 1.646
WLAD-SVR 0.075 0.059 1.412

0.6N(0, 0.22) + 0.4N(0, 22) LS-SVR 0.341 0.270 27.022
WLS-SVR 0.187 0.145 8.889
LAD-SVR 0.082 0.065 1.806
WLAD-SVR 0.071 0.056 1.301
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Figure 4.1 The regression lines for the true function sin(3x)/(3x) under 6 error distributions The true
(solid line : ), LS-SVR (dotted line · · · · · · ), WLAD-SVR (dashed line −−−−)
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Table 4.3 Experimental results on the benchmark datasets

No Dataset #explanatory #train #test Method RMSE MAE SSE/SST
1 AutoMPG 7 275 117 LS-SVR 0.091 0.064 0.184

WLS-SVR 0.097 0.067 0.210
LAD-SVR 0.077 0.058 0.134
WLAD-SVR 0.075 0.055 0.125

2 Bodyfat 14 177 75 LS-SVR 0.053 0.043 0.099
WLS-SVR 0.055 0.044 0.105
LAD-SVR 0.026 0.009 0.023
WLAD-SVR 0.026 0.009 0.023

3 Concrete 8 721 309 LS-SVR 0.124 0.099 0.368
WLS-SVR 0.125 0.099 0.370
LAD-SVR 0.100 0.076 0.239
WLAD-SVR 0.119 0.092 0.337

4 Diabetes 2 31 12 LS-SVR 0.170 0.110 0.967
WLS-SVR 0.167 0.111 0.925
LAD-SVR 0.163 0.137 0.886
WLAD-SVR 0.159 0.125 0.839

5 MCPU 6 147 62 LS-SVR 0.071 0.034 0.253
WLS-SVR 0.104 0.038 0.535
LAD-SVR 0.051 0.029 0.132
WLAD-SVR 0.058 0.032 0.167

6 Pollution 16 42 18 LS-SVR 0.122 0.085 0.562
WLS-SVR 0.126 0.092 0.599
LAD-SVR 0.127 0.099 0.608
WLAD-SVR 0.108 0.077 0.443

7 Pyrim 27 52 22 LS-SVR 0.168 0.094 0.717
WLS-SVR 0.168 0.094 0.718
LAD-SVR 0.189 0.120 0.906
WLAD-SVR 0.162 0.084 0.662

8 Yacht 6 216 92 LS-SVR 0.154 0.107 0.323
WLS-SVR 0.178 0.109 0.434
LAD-SVR 0.139 0.076 0.264
WLAD-SVR 0.138 0.075 0.258

5. Conclusion

In this paper LAD-SVR and WLAD-SVR algorithms are presented based on the robust-
ness of least absolute deviation for regression. The proposed methods provide robust SVR
algorithms to reduce the influence of outliers. To solve the derived optimization problem us-
ing the least absolute deviation loss function and the squared regularization function we use
an approximation iterative method. The experiments have been conducted on two artificial
datasets and eight benchmark datasets. Experiments for both simulated and benchmark
datasets demonstrate that the proposed methods have better performance than classical
LS-SVR and WLS-SVR in points of generalization and stability. Further study on this topic
will adopt WLAD-SVR to many applications in real world regression problems.
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